Prior Publications
Explainable Artificial Intelligence and Explanatory Machine Learning
D. Baskan, and P. K. Erdelt,. Neighborhood-Based Loss Functions for Explainability of Autoencoders. Available at SSRN 4212995. 2022.
A. Kotriwala, B. Klöpper, M. Dix, G. Gopalakrishnan, D. Ziobro, A. Potschka. XAI for Operations in the Process Industry-Applications, Theses, and Research Directions. In AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering 2021.
P. Schramowski, W. Stammer, S. Teso, A. Brugger, F. Herbert,X. Shao, H. G. Luigs,A. K. Mahlein, and K. Kersting, Making Deep Neural Networks Right for the Right Scientific Reasons by Interacting with Their Explanations. Nature Machine Intelligence, 2(8), pp.476-486. 2020.
S. Teso and K. Kersting., Explanatory Interactive Machine Learning. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society 2019 Jan 27 (pp. 239-245).
C. Westin, C. Borst, and B. Hilburn,. Strategic Conformance: Overcoming Acceptance Issues of Decision Aiding Automation?. IEEE Transactions on Human-Machine Systems, 46(1), pp.41-52. 2015.
C. Westin, B. Hilburn, C. Borst, E. J. Van Kampen, and M. Bång,. Building Transparent and Personalized AI Support in Air Traffic Control. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC) (pp. 1-8). IEEE.
W.D van Driel, P. Watté, interPack paper, Reliability of Electronic Drivers: An Industrial Approach, 2021.
T. Gamer, M. Hoernicke, B. Klöpper, R. Bauer, A. J. Isaksson., The autonomous industrial plant–future of process engineering, operations and maintenance. Journal of Process Control. 2020 Apr 1;88:101-10.